lunes, 29 de septiembre de 2008

ESPERANZA MATEMATICA

En estadística la esperanza matemática (o simplemente esperanza) o valor esperado de una variable aleatoria es la suma del producto de la probabilidad de cada suceso por el valor de dicho suceso. Por ejemplo, en un juego de azar el valor esperado es el beneficio medio.

Si todos los sucesos son de igual probabilidad la esperanza es la media aritmética.

Definición

Para una variable aleatoria discreta con valores posibles x_1, x_2 \ldots x_n \,\! y sus probabilidades representadas por la función de masa p(xi) la esperanza se calcula como:

E[X]=\sum_{i=1}^{n} x_i p(x_i) \,\!

Para una variable aleatoria continua la esperanza se calcula mediante la integral de todos los valores y la función de densidad f(x) \,\!:

E[X]=\int_{-\infty}^\infty x f(x)dx \,\!
o \operatorname{E}[X] = \int_\Omega X\, \operatorname{d}P \,\!

La esperanza también se suele simbolizar con \mu = E[X] \,\!

Las esperanzas E[X^k] \,\! para k=0,1,2... \,\! se llaman momentos de orden k \,\!. Más importantes son los momentos centrados E[(X-E[X])^k] \,\!.

No todas las variables aleatorias tienen un valor esperado. Por ejemplo, la distribución de Cauchy no lo tiene.


Propiedades

La esperanza es un operador lineal, ya que:

\operatorname{E}(X + c)=  \operatorname{E}(X) + c \,\!
\operatorname{E}(X + Y)=  \operatorname{E}(X) + \operatorname{E}(Y) \,\!
\operatorname{E}(aX)= a \operatorname{E}(X)  \,\!

Combinando estas propiedades, podemos ver que -

\operatorname{E}(aX + b)= a \operatorname{E}(X) + b  \,\!
\operatorname{E}(a X + b Y) = a \operatorname{E}(X) + b \operatorname{E}(Y)  \,\!

donde X  \,\! e Y \,\! son variables aleatorias y a \,\! y b \,\! dos constantes cualesquiera

COMENTARIO

La esperanza matematica es una forama que nos permite comparar dos o mas alternativas que se tengan.

ARBOL DE PROBABILIDAD

En un concurso de televisión, se dispone de 20 coches, para premiar al concursante, de las marcas y colores que se indican en la siguiente tabla:

RojoAzulTotales
SeatPanda2810
SeatToledo7310
Totales91120

Los coches están colocados aleatoriamente, tras 20 puertas, de forma que el concursante no ve el coche que hay detrás de cada puerta.

El concursante elige un número, entre 1 y 20, y si acierta la marca y el color del coche que hay en la puerta elegida, gana, en caso contrario pierde.

El concurso lo podemos considerar como un experimento aleatorio. Cada resultado es el coche elegido.

Para describir fácilmente todo el proceso vamos a considerar:

Suceso P : El coche es un Seat Panda
Suceso T : El coche es un Seat Toledo
Suceso R : El coche es de color rojo
Suceso A : El coche es de color azul

Así el suceso : "Seat Toledo de color rojo" lo representamos por : T ∩ R y la probabilidad de este suceso, sigue de la tabla :

RojoAzulTotales
SeatPanda2810
SeatToledo7310
Totales91120


P( T ∩ R ) = 7/20

La probabilidad de que el coche sea un Seat Toledo es :

RojoAzulTotales
SeatPanda2810
SeatToledo7310
Totales91120


P(T)=10/20 = 1/2

¿Qué ocurre si, una vez que el concursante ha elegido puerta, el presentador, le da la pista de que el coche que hay tras la puerta es rojo?. Tendremos que cambiar la probabilidad al suceso T y al suceso P. A la probabilidad del suceso T cuando se sabe que ha ocurrido R, le llamamos probabilidad condicionada de T, sabiendo que ha ocurrido R y escribimos:

P(T/R)

Para asignar las nuevas probabilidades hemos de ser consecuentes con las propiedades que debe cumplir toda asignación de probabilidades. El nuevo espacio muestral es el señalado en rojo en la tabla siguiente. Por tanto asignamos así las probabilidades:

RojoAzulTotales
SeatPanda2810
SeatToledo7310
Totales91120


P(T/R) = 7/9 ; P(P/R) = 2/9

De la tabla anterior, siguen fácilmente las siguientes relaciones :

Consideremos ahora el siguiente experimento : Dos urnas, A y B ,la urna A, contiene 3 bolas verdes y 2 bolas rojas, la urna B contiene 2 bolas verdes y 3 bolas rojas.

Se realiza el experimento en dos tiempos, primero se selecciona urna por un procedimiento aleatorio y posteriormente de la urna elegida se extrae una bola.

Para representar, de forma muy adecuada, este tipo de experimentos, se realiza un esquema, llamado : árbol de probabilidades

Cada flecha del diagrama se denomina rama del árbol; a cada rama, asignamos la probabilidad que le corresponde. Un recorrido, desde el comienzo del experimento hasta el final, se llama un camino.

Si sabemos que ha ocurrido el suceso A, tenemos que volver a asignar probabilidades a los distintos caminos; todos los caminos que comienzan por el suceso B, tendrán probabilidad 0 y los que empiezan por el suceso A :

Hay que aceptar por tanto las mismas relaciones entre probabilidades a las que habíamos llegado en el experimento anterior :

Para concretar tenemos que admitir la siguiente definición:

Definición 1. Probabilidad condicionada

De un suceso R sabiendo que ha ocurrido otro A

Y dos teoremas:

Teorema 1. Regla del producto

De la definicion 1, despejando, sigue que:

Teorema 2. Probabilidad total

Si A y B forman un sistema completo de sucesos , la probabilidad de cualquier otro suceso R es:

Sucesos dependientes

Dos sucesos son dependientes si el resultado de uno influye en el otro. Los sucesos A y B son dependientes si y sólo si P(A) es distinto de P(A/B) y P(B) es distinto de P(B/A)

Sucesos independientes

Dos sucesos son independientes si el resultado de uno no influye en el resultado del otro. Los sucesos A y B son independientes si y sólo si P(A)=P(A/B) y P(B)=P(B/A).

Probabilidades a posteriori. Teorema de Bayes.

Vamos a considerar de nuevo, el experimento de las urnas A y B, que contienen bolas verdes y rojas:

Si sabemos que ha salido una bola roja, los caminos posibles en el árbol de probabilidades, quedan reducidos a dos, los señalados en rojo en la imagen anterior; tenemos que reasignar probabilidades, todos los caminos que terminan en bola verde, deberán tener probabilidad 0. ¿Cómo asignamos probabilidades a los caminos que conducen a bola roja?

COMENTARIO

El arbol de probabilidad es una grafica que como su nombre lo dice tiene forma de albol ya que se van formando unas ramas en este se representa todos los posibles resultados que se obtuvieron de un experimento.

PRINCIPIO FUNDAMENTAL DEL CONTEO

El principio básico o fundamental de conteo se puede utilizar para determinar los posibles resultados cuando hay dos o más características que pueden variar.

Ejemplo: El helado puede venir en un cono o una tasa y los sabores son chocolate, fresa y vainilla.

                 / tasa de chocolate
/ chocolate <
/ \ cono de chocolate
/
/ / tasa de fresa
<-- fresa <
\ \ cono de fresa
\
\ / tasa de vainilla
\ vainilla <
\ cono de vainilla

El diagrama anterior se llama diagrama de árbol y muestra todas las posibilidades. El diagrama de árbol también se puede ordenar de otra forma. Ambos diagramas tienen un total de 6 resultados.

             / tasa de chocolate
/
/ tasa <-- tasa de fresa
/ \
/ \ tasa de vainilla
/
<
\
\ / cono de chocolate
\ /
\ cono <-- cono de fresa
\
\ cono de vainilla

Para determinar la cantidad total de resultados, multiplica la cantidad de posibilidades de la primera característica por la cantidad de posibilidades de la segunda característica. En el ejemplo anterior, multiplica 3 por 2 para obtener 6 posibles resultados.

Si hay más de dos resultados, continúa multiplicando las posibilidades para determinar el total de resultados.

COMENTARIO

El principio fundamental del conteo se utiliza para ver los posibles resultados que se obtendran de un experimento cuando este puede ser resuelto de vaias maneras diferentes.

PERMUTACIONES Y COMBINACIONES

Cuando trabajamos con muchos objetos, estos conceptos aparecen frecuentemente. Una permutación es un arreglo de un conjunto de $N $ objetos en un orden definido. El número de permutaciones diferentes de estos $N $ objetos es $N!$; esto se vé fácilmente si pensamos que para la primera alternativa disponemos de los $N $ elementos del conjunto, cada uno de los cuales puede complementarse con los $(N-1) $ restantes como segunda opción, y así hasta llegar a la última elección, conformando el producto $N\cdot(N-1)\cdot\dots\cdot1=.

El número de permutaciones posibles al tomar $R $ objetos del conjunto de $N $ elementos será, siguiendo el mismo razonamiento,

$\displaystyle N\cdot(N-1)\cdot\dots\cdot(N-R+1)=\frac{N!}{(N-R)!} \;.
$

Conviene enfatizar que también en este caso distinguimos subconjuntos que hayan sido escogidos en diferente orden. Una combinación $C_R^N $ es una selección de $R $ objetos sin importar el orden en que se escojan:

$\displaystyle C_R^N = \frac{N!}{(N-R)!\;R!} \equiv
\left(\! \begin{array}{c} N R \end{array} \!\right) \;.
$

El factor $R! $ del denominador descuenta aquellas configuraciones que tienen los mismos elementos y sólo difieren en su ordenamiento.

Si un conjunto de $N $ elementos contiene $n_1 $ elementos idénticos de tipo 1, $n_2 $ de tipo 2, $\dots$ , $n_k $ de tipo $k$, puede verse que el número de permutaciones posibles será

$\displaystyle \frac{N!}{n_1!\;n_2!\;\cdots\;n_k!} \qquad\qquad
\left(\sum_i^k n_i = N\right) \;.
$

Para entender lo que son las permutaciones es necesario definir lo que es una combinación y lo que es una permutación para establecer su diferencia y de esta manera entender claramente cuando es posible utilizar una combinación y cuando utilizar una permutación al momento de querer cuantificar los elementos de algún evento.

COMBINACIÓN Y PERMUTACION.

COMBINACIÓN:

Es todo arreglo de elementos en donde no nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo.

PERMUTACIÓN:

Es todo arreglo de elementos en donde nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo.

Para ver de una manera objetiva la diferencia entre una combinación y una permutación, plantearemos cierta situación.

Suponga que un salón de clase está constituido por 35 alumnos. a) El maestro desea que tres de los alumnos lo ayuden en actividades tales como mantener el aula limpia o entregar material a los alumnos cuando así sea necesario.

b) El maestro desea que se nombre a los representantes del salón (Presidente, Secretario y Tesorero).

Solución:

a) Suponga que por unanimidad se ha elegido a Daniel, Arturo y a Rafael para limpiar el aula o entregar material, (aunque pudieron haberse seleccionado a Rafael, Daniel y a Enrique, o pudo haberse formado cualquier grupo de tres personas para realizar las actividades mencionadas anteriormente).

¿Es importante el orden como se selecciona a los elementos que forma el grupo de tres personas?

Reflexionando al respecto nos damos cuenta de que el orden en este caso no tiene importancia, ya que lo único que nos interesaría es el contenido de cada grupo, dicho de otra forma, ¿quiénes están en el grupo? Por tanto, este ejemplo es una combinación, quiere decir esto que las combinaciones nos permiten formar grupos o muestras de elementos en donde lo único que nos interesa es el contenido de los mismos.

b) Suponga que se han nombrado como representantes del salón a Daniel como Presidente, a Arturo como secretario y a Rafael como tesorero, pero resulta que a alguien se le ocurre hacer algunos cambios, los que se muestran a continuación:

CAMBIOS

PRESIDENTE:

Daniel

Arturo

Rafael

Daniel

SECRETARIO:

Arturo

Daniel

Daniel

Rafael

TESORERO:

Rafael

Rafael

Arturo

Arturo

Ahora tenemos cuatro arreglos, ¿se trata de la misma representación?

Creo que la respuesta sería no, ya que el cambio de función que se hace a los integrantes de la representación original hace que definitivamente cada una de las representaciones trabaje de manera diferente, ¿importa el orden de los elementos en los arreglos?. La respuesta definitivamente sería sí, luego entonces las representaciones antes definidas son diferentes ya que el orden o la forma en que se asignan las funciones sí importa, por lo tanto es este caso estamos tratando con permutaciones.

A continuación obtendremos las fórmulas de permutaciones y de combinaciones, pero antes hay que definir lo que es n! (ene factorial), ya que está involucrado en las fórmulas que se obtendrán y usarán para la resolución de problemas.

n!= al producto desde la unidad hasta el valor que ostenta n.

n!= 1 x 2 x 3 x 4 x...........x n

Ejem.

10!=1 x 2 x 3 x 4 x.........x 10=3,628,800

8!= 1 x 2 x 3 x 4 x.........x 8=40,320

6!=1 x 2 x 3 x 4 x..........x 6=720, etc., etc.

Obtención de fórmula de permutaciones.

Para hacer esto, partiremos de un ejemplo.

¿Cuántas maneras hay de asignar los cuatro primeros lugares de un concurso de creatividad que se verifica en las instalaciones de nuestro instituto, si hay 14 participantes?

Solución:

Haciendo uso del principio multiplicativo,

14x13x12x11 = 24,024 maneras de asignar los primeros tres lugares del concurso

Esta solución se debe, a que al momento de asignar el primer lugar tenemos a 14 posibles candidatos, una vez asignado ese lugar nos quedan 13 posibles candidatos para el segundo lugar, luego tendríamos 12 candidatos posibles para el tercer lugar y por último tendríamos 11 candidatos posibles para el cuarto lugar.

Luego si n es el total de participantes en el concurso y r es el número de participantes que van a ser premiados, y partiendo de la expresión anterior, entonces.

14x13x12x11= n x (n - 1) x (n - 2) x .......... x (n – r + 1)

si la expresión anterior es multiplicada por (n – r)! / (n – r)!, entonces

= n x (n –1 ) x (n – 2) x ......... x (n – r + 1) (n – r)! / (n – r)!

= n!/ (n – r)!

Por tanto, la fórmula de permutaciones de r objetos tomados de entre n objetos es:

Esta fórmula nos permitirá obtener todos aquellos arreglos en donde el orden es importante y solo se usen parte (r) de los n objetos con que se cuenta, además hay que hacer notar que no se pueden repetir objetos dentro del arreglo, esto es, los n objetos son todos diferentes.

Entonces, ¿ qué fórmula hay que usar para arreglos en donde se utilicen los n objetos con que se cuenta?

Si en la fórmula anterior se sustituye n en lugar de r, entonces.

nPn= n!/ (n –n)! = n! / 0! = n! / 1 = n!

Como 0! = 1 de acuerdo a demostración matemática, entonces

nPn= n!

Ejemplos:

1) ¿Cuantas representaciones diferentes serán posibles formar, si se desea que consten de Presidente, Secretario, Tesorero, Primer Vocal y Segundo Vocal?, sí esta representación puede ser formada de entre 25 miembros del sindicato de una pequeña empresa.

Solución:

Por principio multiplicativo:

25 x 24 x 23 x 22 x 21 = 6,375,600 maneras de formar una representación de ese sindicato que conste de presidente, secretario, etc., etc.

Por Fórmula:

n = 25, r = 5

25P5 = 25!/ (25 –5)! = 25! / 20! = (25 x 24 x 23 x 22 x 21 x....x 1) / (20 x 19 x 18 x ... x 1)=

= 6,375,600 maneras de formar la representación

2) a. ¿Cuántas maneras diferentes hay de asignar las posiciones de salida de 8 autos que participan en una carrera de fórmula uno? (Considere que las posiciones de salida de los autos participantes en la carrera son dadas totalmente al azar) b. ¿Cuántas maneras diferentes hay de asignar los primeros tres premios de esta carrera de fórmula uno?

Solución:

a. Por principio multiplicativo:

8 x 7 x 6 x 5 x 4 x 3 x 2 x 1= 40,320 maneras de asignar las posiciones de salida de los autos participantes en la carrera

Por Fórmula:

n = 8, r = 8

8P8= 8! = 8 x 7 x 6 x 5 x 4 x......x 1= 40,320 maneras de asignar las posiciones de salida ......etc., etc.

b. Por principio multiplicativo:

8 x 7 x 6 = 336 maneras de asignar los tres primeros lugares de la carrera

Por fórmula:

n =8, r = 3

8P3 = 8! / (8 – 3)! = 8! / 5! = (8 x 7 x 6 x 5 x ........x1)/ (5 x 4 x 3 x......x1) = 336 maneras de asignar los tres primeros lugares de la carrera

3) ¿Cuántos puntos de tres coordenadas ( x, y, z ), será posible generar con los dígitos 0, 1, 2, 4, 6 y 9?, Si, a. No es posible repetir dígitos, b. Es posible repetir dígitos.

Solución:

a. Por fórmula

n = 6, r = 3

6P3 = 6! / (6 – 3)! = 6! / 3! = 6 x 5 x 4 x 3! / 3! = 6 x 5 x 4 = 120 puntos posibles

Nota: este inciso también puede ser resuelto por el principio multiplicativo

b. Por el principio multiplicativo

6 x 6 x 6 = 216 puntos posibles

¿Cuál es la razón por la cuál no se utiliza en este caso la fórmula?. No es utilizada debido a que la fórmula de permutaciones sólo se usa cuando los objetos no se repiten, esto quiere decir que en el inciso a. Los puntos generados siempre van a tener coordenadas cuyos valores son diferentes ejem. (1, 2, 4), (2, 4, 6), (0, 4, 9), etc. etc., mientras que los puntos generados en el inciso b. Las coordenadas de los puntos pueden tener valores diferentes o repeticiones de algunos valores o pueden tener todas las coordenadas un mismo valor ejem. (1, 2, 4), (1, 2, 2), (1, 1, 1), etc., etc.

4) a. ¿Cuántas maneras hay de asignar las 5 posiciones de juego de un equipo de básquetbol, si el equipo consta de 12 integrantes?, b. ¿Cuántas maneras hay de asignar las posiciones de juego si una de ellas solo puede ser ocupada por Uriel José Esparza?, c. ¿Cuántas maneras hay de que se ocupen las posiciones de juego si es necesario que en una de ellas este Uriel José Esparza y en otra Omar Luna?

Solución:

a. Por fórmula:

n = 12, r = 5

12P5 = 12! / (12 – 5 )! = 12 x 11 x 10 x 9 x 8 = 95,040 maneras de asignar las cinco posiciones de juego

a. Por principio multiplicativo:

1 x 11 x 10 x 9 x 8 =7,920 maneras de asignar las posiciones de juego

Por fórmula:

1 x 11P4 = 1 x 11! / (11 – 4)! = 11! / 7! = 11 x 10 x 9 x 8 = 7,920 maneras de asignar las posiciones de juego con Uriel José en una determinada posición

a. Por principio multiplicativo

1 x 1 x 10 x 9 x 8 = 720 maneras de ocupar las diferentes posiciones de juego

Por fórmula:

1 x 1 x 10P3 = 1 x 1 x 10! / (10 – 3)! = 10! / 7! = 10 x 9 x 8 = 720 maneras de ocupar las posiciones de juego con Uriel José y Omar Luna en posiciones previamente definidas

5) Cuántas claves de acceso a una computadora será posible diseñar, si debe constar de dos letras, seguidas de cinco dígitos, las letras serán tomadas del abecedario y los números de entre los dígitos del 0 al 9. a. Considere que se pueden repetir letras y números, b. Considere que no se pueden repetir letras y números, c. ¿Cuántas de las claves del inciso b empiezan por la letra A y terminan por el número 6?, d. ¿Cuántas de las claves del inciso b tienen la letra R seguida de la L y terminan por un número impar?

Solución:

a. Por principio multiplicativo:

26 x 26 x 10 x 10 x 10 x 10 x 10 = 67,600,000 claves de acceso

Por fórmula:

26P2 x 10P5 = 26 x 25 x 10 x 9 x 8 x 7 x 6=19,656,000 claves de acceso

a. Por fórmula:

1 x 25P1 x 9P4 x 1 = 1 x 25 x 9 x 8 x 7 x 6 x 1 = 75,600 claves de acceso que empiezan por la letra A y terminan por el número 6

b. Por fórmula:

1 x 1 x 9P4 x 5 = 1 x 1 x 9 x 8 x 7 x 6 x 5 =15,120 claves de acceso que tienen la letra R seguida de la L y terminan por un número impar.

COMENTARIO

Premutaciones se les llama a cada posibilidad de ordenar los elementos de un determinado conjunto.

Combinaciones le llamamos a cada uno de los elementos en donde aqui el orden no nos va a importar.

ESPACIO MUESTRAL

En estadística se llama espacio muestral al conjunto de todos los posibles resultados individuales de un experimento aleatorio. Se suele representar por Ω.

Sus elementos se representan por letras minúsculas (w1,w2,...) y se denominan eventos o sucesos elementales. Los subconjuntos de Ω se designan por medio de letras mayúsculas (A,B,C,D,...) y se denominan eventos o sucesos. Los sucesos representan los posibles resultados del experimento aleatorio.

Tipos de espacio muestral

Un espacio muestral Ω es discreto, cuando Ω es un conjunto discreto, es decir, finito o numerable; y es continuo, cuando no es numerable.

Particiones

Es posible definir particiones sobre el espacio muestral. Formalmente hablando, una partición sobre Ω se define como un conjunto numerable:

 \{A_i \}_{i \in \N} \; tal que
  1. A_1 \cup A_2 \cup .. \cup A_n = \Omega
  2. A_i \cap A_j = \emptyset \; \forall i \ne j ;\ i,j=1..n
  3. 0 \; \forall i=1..n " src="http://upload.wikimedia.org/math/8/3/6/836ef6937b2cbf21e1f47f994eb3afa6.png">

Ejemplos

Por ejemplo, en el caso del experimento aleatorio "lanzar un dado", el espacio muestral del experimento sería: Ω={1,2,3,4,5,6}. Por otro lado, si cambiamos ligeramente la experiencia pensando en el número resultante de la suma de 2 dados, entonces tenemos 2 espacios muestrales:

Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),...(6,6)} = {1,2,3,4,5,6}x{1,2,3,4,5,6}

Ω'={2,3,4,...,12}


La elección del espacio muestral es un factor determinante para realizar el cálculo de la probabilidad de un suceso.

COMENTARIO

Se le llama espacio muestral a todos los posibles resultados que se obtendran individualmente de un experimento que no sigue un orden .